Syntactic Processing:
Parts-of-Speech Tagging &
Dependency Parsing
CSE354 - Spring 2021

Task

e Parts-of-Speech Tagging e Machine learning:

?
e Dependency Parsing how: o Logistic regression
’ o Conditional Random
Fields

e Transition-Based Parsing
e Graph-based Parsing

Dependency Parsing

<relationship>

<head> <dependent>

dependency -- binary asymmetrical relation between tokens

Dependency Parsing

I prefer the morning flight through Denver

(13.1)

prefer

Dependency Parsing /\

/ flight

T T

the morning Denver
(det)

(de
[through

I prefer the morning flight through Denver

(13.1)

Dependency Parsing

Clausal Argument Relations Description

NSUBJ Nominal subject

DOBJ Direct object

I0OBJ Indirect object

CCOMP Clausal complement
XCOMP Open clausal complement
Nominal Modifier Relations Description

NMOD Nominal modifier

AMOD Adjectival modifier
NUMMOD Numeric modifier

APPOS Appositional modifier
DET Determiner

CASE Prepositions, postpositions and other case markers
Other Notable Relations Description

CONJ Conjunct

ce Coordinating conjunction

IDTNICER®] Selected dependency relations from the Universal Dependency set. (de Marn-
effe et al., 2014)

Dependency Parsing

Relation Examples with head and dependent
NSUBJ United canceled the flight.
DOBJ United diverted the flight to Reno.

We booked her the first flight to Miami.
I0BJ We booked her the flight to Miami.
NMOD We took the morning flight.
AMOD Book the cheapest flight.
NUMMOD Before the storm JetBlue canceled 1000 flights.
APPOS United, a unit of UAL, matched the fares.
DET The flight was canceled.

Which flight was delayed?
CONJ We flew to Denver and drove to Steamboat.
CC We flew to Denver and drove to Steamboat.
CASE Book the flight through Houston.

DTV RR] Examples of core Universal Dependency relations.

Dependency Parsing

Relation Examples with head and dependent
NSUBJ United|canceled }he flight.
DOBJ United diverted the flight to Reno.

We booked her the first flight to Miami.
I0BJ We booked her the flight to Miami.
NMOD We took the morning flight.
AMOD Book the cheapest flight.
NUMMOD Before the storm JetBlue canceled 1000 flights.
APPOS United, a unit of UAL, matched the fares.
DET The flight was canceled.

Which flight was delayed?
CONJ We flew to Denver and drove to Steamboat.
CC We flew to Denver and drove to Steamboat.
CASE Book the flight through Houston.

DTV RR] Examples of core Universal Dependency relations.

Verbal Predicate -- like a function, takes
arguments: “United” and “the flight” in this case.

Dependency Parsing -- Verbal Predicates

(13.2) United canceled the morning flights to Houston

Dependency Parsing -- Verbal Predicates

cancel(“United”, “the morning flights to Houston”)

ro
dob

ot
an
an case

[Umted][canceled the morning flights to Houston

(13.2)

(From SLP 3rd ed., Jurafsky and Martin 2018)

Dependency Parsing -- Verbal Predicates

to _call_off("United”, “the morning flights to Houston™)

ro
dob

ot
an
an case

[Umted][canceled the morning flights to Houston

(13.2)

(From SLP 3rd ed., Jurafsky and Martin 2018)

Dependency Parsing -- Verbal Predicates
Semantic Roles

to_call_off(agent="United”, event="the morning flights to Houston")

roo
dob

an
(@mod) case
\ 4

[Umted][canceled the morning flights to Houston

(13.2)

(From SLP 3rd ed., Jurafsky and Martin 2018)

Dependency Parsing -- How to Represent?

A Graph: G =[(V1, A1), (V2,A2),...] (vertices and arcs)

Restrictions:
?

root
[rood (dobj]
det
A 4

(13.2) United canceled the morning flights to Houston

Dependency Parsing -- How to Represent?

A Graph: G =[(V1, A1), (V2,A2),...] (vertices and arcs)
Restrictions:

1) Single designated ROOT with no incoming arcs

2) Every vertex only has one head (parent, governer); i.e. only one incoming arc
3) unique path from ROQOT to every vertex

(13.2) United canceled the morning flights to Houston

Transition-based Dependency Parsing

Inspired by “Shift-reduce parsing” -- process one word at a time, using a stack to
keep some sort of memory.

Elements:

S: stack, initialized with “ROOT”

B: input buffer, initialized with tokens (w1, w2,) of sentence
A: set of dependency arcs, initialized empty

T: Actions, given wi (next token in stack)

Transition-based Dependency Parsing

Inspired by “Shift-reduce parsing” -- process one word at a time, using a stack to
keep some sort of memory.

Elements:

S: stack, initialized with “ROOT”
B: input buffer, initialized with tokens (w1, w2,) of sentence
A: set of dependency arcs, initialized empty

e T Actions, given wi (next token in stack)
o shift(B,S): move w from Bto S
o left-arc(S,A): make top of stack head of next item: add to A; remove dependent from stack
o right-arc(S,A): make top of stack dependent of next item: add to A; remove dep from stack

Using discriminative classifiers (i.e. logistic regression) to make decisions.

Transition-based Dependency Parsing

Input buffer
wi w2 wn
- \L Dependency
ad f o Parser > Relations
Stack | -
——
sn
—

Basic transition-based parser. The parser examines the top two elements of the
stack and selects an action based on consulting an oracle that examines the current configura-

ton. (From SLP 3rd ed., Jurafsky and Martin 2018)

| function DEPENDENCYPARS E(words) returns dependency tree

Transition-based Dependency Parsing

state «— { [root], [words], [] } ; initial configuration

while state not final
t<— ORACLE(state)

; choose a transition operator to apply

state <— APPLY(t, state) ; apply it, creating a new state

return state

Stack

s1

s2

sn

Input buffer
w1 w2 wn
. Dependency
Parser Relations
Oracle
——

Figure 13.5

tion.

Basic transition-based parser. The parser examines the top two elements of the
stack and selects an action based on consulting an oracle that examines the current configura-

Transition-based Dependency Parsing

: function DEPENDENCYPARSE(words) returns dependency tree

|
|
. state «— { [root], [words], [] } ; initial configuration I
: while state not final I
| t < ORACLE(state) : choose a transition operator to apply !
I state <— APPLY(t, state) ; apply it, creating a new state :
I return srate I

(13.5) Book me the morning flight

Let’s consider the state of the configuration at Step 2, after the word me has been
pushed onto the stack.

Stack | Word List | Relations
[root, book, me] | [the, morning, flight] |

The correct operator to apply here is RIGHTARC which assigns book as the head of
me and pops me from the stack resulting in the following configuration.

Stack | Word List . Relations
[root, book] | [the, morning, flight] | (book — me)

Transition-based Dependency Parsing

Step Stack | Word List Action

Relation Added

0 [root] | [book, me, the, morning, flight] SHIFT

shift(B,S): move w from Bto S

left-arc(S,A): make top of stack head of next item: add to A;
remove dependent from stack

right-arc(S,A): make top of stack dependent of next item: add to A;
remove dep from stack

Transition-based Dependency Parsing

Step Stack | Word List Action Relation Added
0 [root] | [book, me, the, morning, flight] SHIFT
| [root, book] | [me, the, morning, flight] SHIFT

shift(B,S): move w from Bto S

left-arc(S,A): make top of stack head of next item: add to A;
remove dependent from stack

right-arc(S,A): make top of stack dependent of next item: add to A;
remove dep from stack

Transition-based Dependency Parsing

Step Stack | Word List Action Relation Added
0 [root] | [book, me, the, morning, flight] SHIFT
| [root, book] | [me, the, morning, flight] SHIFT
2 [root, book, me] | [the, morning, flight] RIGHTARC (book — me)

shift(B,S): move w from Bto S

left-arc(S,A): make top of stack head of next item: add to A;
remove dependent from stack

right-arc(S,A): make top of stack dependent of next item: add to A;
remove dep from stack

Transition-based Dependency Parsing

Step Stack | Word List Action Relation Added
0 [root] | [book, me, the, morning, flight] SHIFT
| [root, book] | [me, the, morning, flight] SHIFT
2 [root, book, me] | [the, morning, flight] RIGHTARC (book — me)
3 [root, book] | [the, morning, flight] SHIFT
4 [root, book, the] | [morning, flight] SHIFT
5 [root, book, the, morning] | [flight] SHIFT

shift(B,S): move w from Bto S

left-arc(S,A): make top of stack head of next item: add to A;

remove dependent from stack

remove dep from stack

right-arc(S,A): make top of stack dependent of next item: add to A;

Transition-based Dependency Parsing

Step Stack | Word List Action Relation Added

0 [root] | [book, me, the, morning, flight] SHIFT

| [root, book] | [me, the, morning, flight] SHIFT

2 [root, book, me] | [the, morning, flight] RIGHTARC (book — me)

3 [root, book] | [the, morning, flight] SHIFT

4 [root, book, the] | [morning, flight] SHIFT

5 [root, book, the, morning] | [flight] SHIFT

6 | [root, book, the, morning, flight] | [] LEFTARC | (morning < flight)

shift(B,S): move w from Bto S

left-arc(S,A): make top of stack head of next item: add to A;
remove dependent from stack

right-arc(S,A): make top of stack dependent of next item: add to A;
remove dep from stack

Transition-based Dependency Parsing

Step Stack | Word List Action Relation Added
0 [root] | [book, me, the, morning, flight] SHIFT
| [root, book] | [me, the, morning, flight] SHIFT
2 [root, book, me] | [the, morning, flight] RIGHTARC (book — me)
3 [root, book] | [the, morning, flight] SHIFT
4 [root, book, the] | [morning, flight] SHIFT
5 [root, book, the, morning] | [flight] SHIFT
6 [root, book, the, morning, flight] | [] LEFTARC | (morning < flight)
7 [root, book, the, flight] | [] LEFTARC (the «+ flight)
8 [root, book, flight] | [] RIGHTARC (book — flight)
9 [root, book] | [] RIGHTARC (root — book)
10 [root] | [] Done

QTR Trace of a transition-based parse.

Dependency Parsing -- How to Represent?

A Graph: G =[(V1, A1), (V1,A2),...] (vertices and arcs)
Restrictions:

1) Single designated ROOT with no incoming arcs

2) Every vertex only has one head (parent, governer); i.e. only one incoming arc
3) unique path from ROQOT to every vertex

(13.2) United canceled the morning flights to Houston

Dependency Parsing -- How to Represent?

A Graph: G =[(V1, A1), (V1,A2),...] (vertices and arcs)
Restrictions:

1) Single designated ROOT with no incoming arcs

2) Every vertex only has one head (parent, governer); i.e. only one incoming arc

3) unique path from ROQOT to every vertex

Projectivity: Given head, dependent; for every word between head and dependent
there exists a path from head to that word

dobj

@
f

United canceled the morning flights to Houston

(13.2)

Dependency Parsing -- How to Represent?

A Graph: G =[(V1, A1), (V1,A2),...] (vertices and arcs)
Restrictions:

1) Single designated ROOT with no incoming arcs

2) Every vertex only has one head (parent, governer); i.e. only one incoming arc

3) unique path from ROQOT to every vertex

Projectivity: Given head, dependent; for every word between head and dependent
there exists a path from head to that word

dobj

@
[

United| canceled the morning to Houston

(13.2)

Dependency Parsing -- How to Represent?

A Graph: G =[(V1, A1), (V1,A2),...] (vertices and arcs)
Restrictions:

1) Single designated ROOT with no incoming arcs

2) Every vertex only has one head (parent, governer); i.e. only one incoming arc

3) unique path from ROQOT to every vertex

Projectivity: Given head, dependent; for every word between head and dependent
there exists a path from head to that word

adv

(13.3) JetBlue canceled our flight this morning which was already late

Dependency Parsing -- How to Represent?

A Graph: G =[(V1, A1), (V1,A2),...] (vertices and arcs)
Restrictions:

1) Single designated ROOT with no incoming arcs

2) Every vertex only has one head (parent, governer); i.e. only one incoming arc

3) unique path from ROQOT to every vertex

Projectivity: Given head, dependent; for every word between head and dependent
there exists a path from head to that word.

Not Projective:

\ 4

JetBlue canceled our |flight this mofhing which

(13.3) already late

Dependency Parsing -- How to Represent?

A Graph: G =[(V1, A1), (V1,A2),...] (vertices and arcs)
Restrictions:
1) Single designated ROOT with no incoming arcs
2) Every vertex only has one head (parent, governer); i.e. only one incoming arc
3) unique path from ROQOT to every vertex
Projectivity: Given head, dependent; for every word between head and dependent
there exists a path from head to that word.
Not Projective:

Why do we care? Dependency trees from Context-Free Grammars are
guaranteed to be projective; Thus, transition based techniques are certain to have
errors occasionally on non-projective dependency graphs.

From Syntax to Semantics

e \We've already seen words have many meanings.
o Context is key

e \erbs can been seen as functions (predicates) that take arguments.
o Syntactic arguments fulfill semantic roles

e \Words have implicit syntactic relationships
with each other in given sentences.
o Dependency Parsing: each word has one head
o Easily constructed through 3 actions of shift-reduce parsing.

Takeaway: There is an interplay between word meaning and sentence structure!

Graph-based Approaches

A Graph: G=[(V1,A1), (V1,A2),...] (vertices and arcs)

Restrictions:

1) Single designated ROOT with no incoming arcs

2) Every vertex only has one head (parent, governer); i.e. only one incoming arc
3) unique path from ROOT to every vertex

|ldea: Search through all possible trees and pick best.

Graph-based Approaches

A Graph: G=[(V1,A1), (V1,A2),...] (vertices and arcs)

Restrictions:

1) Single designated ROOT with no incoming arcs

2) Every vertex only has one head (parent, governer); i.e. only one incoming arc
3) unique path from ROOT to every vertex

|ldea: Search through all possible trees and pick best.

General approach: For
each word, pick the most
likely head. Then check if
still a fully-connected tree,
and adjust.

Graph-based Approaches

A Graph: G=[(V1,A1), (V1,A2),...] (vertices and arcs)

Restrictions:

1) Single designated ROOT with no incoming arcs

2) Every vertex only has one head (parent, governer); i.e. only one incoming arc
3) unique path from ROOT to every vertex

ldea: Search through all possible trees and pick best.

General approach: For
each word, pick the most
likely head. Then check if
still a fully-connected tree,
and adjust.

Complex and slow but leads
to state of the art. Now done
. with neural models.

DOORK

Relation to Semantic Roles
Thematic Role Definition

AGENT The volitional causer of an event

EXPERIENCER The experiencer of an event

FORCE The non-volitional causer of the event

THEME The participant most directly affected by an event
RESULT The end product of an event

CONTENT The proposition or content of a propositional event

INSTRUMENT An instrument used in an event

BENEFICIARY The beneficiary of an event

SOURCE The origin of the object of a transfer event
GOAL The destination of an object of a transfer event

JetBlue canceled our flight this morning which was already late

(13.3)

Relation to Semantic Roles
Thematic Role Definition

AGENT The volitional causer of an event

EXPERIENCER The experiencer of an event

FORCE The non-volitional causer of the event

THEME The participant most directly affected by an event

Roles are restricted to nouns, but signalled through
the verb and other parts of speech.

Zil UL dI1 UDJCCL U1 d H4llsIcl Cveln

this [mofning}[which] was alrevady late

ASl,lbjl-\
(13.3) canceled our

Parts-of-Speech

Open Class (also known as “content words”):

Nouns, Verbs, Adjectives, Adverbs

Parts-of-Speech

Open Class (also known as “content words”):
Nouns, Verbs, Adjectives, Adverbs
Function words:

Determiners, conjunctions, pronouns, prepositions
mostly specify syntactic structure; express broad semantics connecting content words

Parts-of-Speech: The Penn Treebank Tagset

Table 2
The Penn Treebank POS tagset.

Coordinating conjunction
Cardinal number
Determiner
Existential there
Foreign word
Preposition/subordinating
conjunction
Adjective
Adjective, comparative
Adjective, superlative
List item marker
Modal
Noun, singular or mass
Noun, plural
Proper noun, singular
Proper noun, plural
Predeterminer
Possessive ending
Personal pronoun
Possessive pronoun
Adverb
Adverb, comparative
Adverb, superlative
Particle

to

Interjection

Verb, base form

Verb, past tense

Verb, gerund/present
participle

Verb, past participle

Verb, non-3rd ps. sing. present

Verb, 3rd ps. sing. present

wh-determiner

wh-pronoun

Possessive wh-pronoun

wh-adverb

Pound sign

Dollar sign

Sentence-final punctuation

Comma

Colon, semi-colon

Left bracket character

Right bracket character

Straight double quote

Left open single quote

Left open double quote

Right close single quote

Right close double quote

3 Symbol (mathematical or scientific) .

Tag Description

Nominal, Nominal + Verbal
common noun (NN, NNS) books someone
pronoun (personal/WH; not it you u meeee
possessive; PRP, WP)
nominal + possessive books’ someone’s
proper noun (NNP, NNPS) lebron usa iPad
proper noun + possessive ~ America’s
nominal + verbal he’s book'll iono

(= 1don’t know)

proper noun + verbal Mark'll

Examples

Parts-of-Speech:
Social Media Tagset

(Gimpel et al., 2010)

Other open-class words
verb incl. copula,
auxiliaries (V+, MD)

might gonna
ought couldn'’t is
eats

Twitter/online-specific

adjective (J*)
adverb (Rx, WRB)
interjection (UH)

good fav lil

2 (i.e., too)

lol haha FTW yea
right

Other closed-class words
D determiner (WDT, DT,

WPS, PRPS)

P pre- or postposition, or
subordinating conjunction

(IN, TO)

coordinating conjunction

(CC)
verb particle (RP)
existential there,

predeterminers (EX, PDT)

X + verbal

the teh its it's

while to for 2 (i.e.,
to) 4 (i.e., for)

and n & + BUT

out off Up UP
both

there’s all's

hashtag (indicates
topic/category for tweet)
@ at-mention (indicates

another user as a recipient

of a tweet)
discourse marker,

indications of continuation

of a message across
multiple tweets
U URL or email address
E emoticon

#acl

@BarackObama

RT and : in retweet
construction RT
@user : hello

http://bit.ly/xyz
=) b(<30.0

1.6
1.0

Miscellaneous
numeral (CD)

punctuation (¥, $, " ", (,

Yosormenaini 9

other abbreviations, foreign
words, possessive endings,

symbols, garbage (E'W,
POS, SYM, LS)

2010 four 9:30
... 21?2

ily (I love you) wby
(what about you)'s

£ >
awesome...I'm

1.5
11.6

1.1

POS Tagging: Applications

e Resolving ambiguity (speech: “lead”)
e Shallow searching: find noun phrases
e Speed up parsing

e Use as feature (or in place of word)

POS Tagging: Applications

e Resolving ambiguity (speech: “lead”)
e Shallow searching: find noun phrases
e Speed up parsing

e Use as feature (or in place of word)

e Understand what modern deep learning methods are dealing with implicitly.

Window-based POS Tagging

Approach like we did word sence disambiquation...

The book \looks brief so I am happy .
v

?

Window-based POS Tagging

The book \looks brief so I am happy .
v

D

Window-based POS Tagging

The book looks brief so I am happy .
Voo

D N

Window-based POS Tagging

The \book looks brief so I am happy .
2 IR

D N ?

Window-based POS Tagging

The \book looks brief so I am happy .
2 IR

D N 4

Window-based POS Tagging

The book looks brief so\ I am happy .
20 TR R

D N V A

Window-based POS Tagging

The book looks brief so\ I am happy .
20 TR R

D N V 7

Window-based POS Tagging

window ¢ize
of 3

The book |loo/es brz’ef@[am happy .
2R T R

b N V 7?7

Window-based POS Tagging

window ¢ize
of 3

The book |loo/es brz’ef@[am happy .
2R T R

b N V 7?7

N

Window-based POS Tagging

window size

of 3

The book |loo/es brz’cf@[am happy .
2R T R

/D(,bo:’, = ‘/\/’/wom’, = “ér/efvy = 0.3
D N V ? ' '

Window-based POS Tagging

window ¢ize

of 3

The book |loo/es brz’ef@[am happy .

A * P(,bo:'; = ‘/\/’/wom’; = ‘brief’) = 0.3
b NV ? P(,bo:", = ‘(/’/worc/; = “brief’) = 0.4
/’(,borl, = ‘/4’/w0rc/,. = ‘brief”) = 0.3

Window-based POS Tagging

window ize

of 3

The book |loo/es brz’cf@[am happy .

vy v ' P p= ‘/l/’/wfr brief) = .30
D N V ? Pl p= V ’/w/zér/ef) =.40
Pl p= A ’/w;:érief) =.30

Window-based POS Tagging

window ¢ize

of 3

The book |loo/es brz’ef@[am happy .

o Wasbriefu ~tooks-co) - 77
D N V ? Pl p= v/ w = brief, w;_7=/omé§, w. =<0) = 7?7
Pl p= A ’/wl,::ér/ef: w;_7=/omé§, w, =<0) =77

Window-based POS Tagging

window ¢ize

of 3 ideal result

The book |loo/es brz’ef@[am happy .

by ' P p= ‘/l/’/w;:érief: w, =locks,w, 7=§'0) =.005
DNV 7 Plo=Vw=bricfw_=losks,w =0) =.005
Pl p= A ’/w{,zér/ef: w;_7=/omé§, w, =<0) =.99

Window-based POS Tagging
More likely,

because we

window $ize ,
haven't seen

of 3 this context

before.

The book |loo/es brz’ef@[am happy .

* * * * P p= ‘/l/’/w;:érieﬁ’ wl,_7=/omé§, w. =<0) =.3
b NV ? P [P,F 1’4 ’/WIFér/ef, wl,_7=/omé§, w. =<0) =.9
Pl p= A ’/w{,zér/ef: w;_7=/omé§, w, =<0) =.3

Window-based POS Tagging
More likely,

because we

window $ize ,
haven't seen

of 3 this context

before.

The book |loo/es brz’ef@[am happy .

vy v v P p= ‘/l/’/w;:érief,’ w/_7=/omé§, w, =<0) =.3
b NV ? P [P,F 1’4 ’/WIFér/ef, wl,_7=/omé§, w. =<0) =.9
\/ P[p= A ’/w/zér/'ef,’ w;_7=/0mé§‘, w. =<0) =.3

Sequential Model

window ¢ize

of 3

The book |loo/es brz’ef@[am happy .

v ' * P p= ‘/l/’/w;:érieﬁ w/_7=/omé§, w, =<0) =.3
b NV ? P [P'F 1’4 ’/WIFér/ef, wl,_7=/omé§, w. =<0) =.9

\/ P[p= A ’/w/zér/'ef,’ w;_7=/0mé§‘, w. =<0) =.3

§'€7£(€h08

order of 1

Sequential Model

window ¢ize

of 3

The book |loo/es brz’ef@[am happy .

v ' * P p= ‘/l/’/w;:érieﬁ w/_7=/omé§, w, =<0) =.3
b NV ? P [P'F 1’4 ’/WIFér/ef, wl,_7=/omé§, w. =<0) =.9

\/ \/\/ Pl p= A ’/wl,zér/ef,’ wl,_7=/omé§, w, =<0) =.3

§'€7£(€h08

order of 1

Sequential Model

window ¢ize

of 3

The book |loo/es brz’ef@[am happy .

Y W -
DN V7 phyy -0

AV Plp=Alp_=V) = .4

§'€7é(€h08

order of 1

Sequential Model

window ¢ize

of 3

The book |loo/es brz’ef@[am happy .

oy v P p= ‘/l/’/,bM: v, w;:ér/ef] =.3
D N V 7 /D[lb;: ‘{/’//b/—7: M w;:ér/ef) =.05

\/ \/\/ P[/b;: A ’/le: 4 w;——ér/ef} = .65

§'€7é(€h08

order of 1

Sequence modeling

-- Tasks that in which a current label is dependent on previous
labels within a sequence.

More generally: tasks that can leverage the order of words.

Most basic example: Language Modeling
-- Predicting the next word given previous.

