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how?

Task

● Parts-of-Speech Tagging
● Dependency Parsing

● Machine learning: 
○ Logistic regression
○ Conditional Random 

Fields
● Transition-Based Parsing
● Graph-based Parsing



Dependency Parsing

<head> <dependent>

<relationship>

dependency -- binary asymmetrical relation between tokens
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Dependency Parsing

(From SLP 3rd ed., Jurafsky and Martin 2018)

Verbal Predicate -- like a function, takes 
arguments: “United” and “the flight” in this case. 



Dependency Parsing -- Verbal Predicates

(From SLP 3rd ed., Jurafsky and Martin 2018)



Dependency Parsing -- Verbal Predicates

(From SLP 3rd ed., Jurafsky and Martin 2018)

cancel(“United”, “the morning flights to Houston”)



Dependency Parsing -- Verbal Predicates

(From SLP 3rd ed., Jurafsky and Martin 2018)

to_call_off(“United”, “the morning flights to Houston”)



Dependency Parsing -- Verbal Predicates
Semantic Roles

(From SLP 3rd ed., Jurafsky and Martin 2018)

to_call_off(agent=“United”, event=“the morning flights to Houston”)
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Transition-based Dependency Parsing

Inspired by “Shift-reduce parsing” -- process one word at a time, using a stack to 
keep some sort of memory. 

Elements: 

● S: stack, initialized with “ROOT”
● B: input buffer, initialized with tokens (w1, w2, ….) of sentence
● A: set of dependency arcs, initialized empty 
● T: Actions, given wi (next token in stack) 



Transition-based Dependency Parsing

Inspired by “Shift-reduce parsing” -- process one word at a time, using a stack to 
keep some sort of memory. 

Elements: 

● S: stack, initialized with “ROOT”
● B: input buffer, initialized with tokens (w1, w2, ….) of sentence
● A: set of dependency arcs, initialized empty 
● T: Actions, given wi (next token in stack) 

○ shift(B,S): move w from B to S
○ left-arc(S,A): make top of stack head of next item: add to A; remove dependent from stack
○ right-arc(S,A): make top of stack dependent of next item: add to A; remove dep from stack

Using discriminative classifiers (i.e. logistic regression) to make decisions. 
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Dependency Parsing -- How to Represent? 

(From SLP 3rd ed., Jurafsky and Martin 2018)

A Graph:  G = [(V1, A1), (V1, A2), …]      (vertices and arcs)
Restrictions: 
1) Single designated ROOT with no incoming arcs
2) Every vertex only has one head (parent, governer); i.e. only one incoming arc
3) unique path from ROOT to every vertex
Projectivity: Given head, dependent; for every word between head and dependent 

there exists a path from head to that word.      
Not Projective:

Why do we care? Dependency trees from Context-Free Grammars are 
guaranteed to be projective; Thus, transition based techniques are certain to have 
errors occasionally on non-projective dependency graphs. 



From Syntax to Semantics

● We've already seen words have many meanings.
○ Context is key

● Verbs can been seen as functions (predicates) that take arguments. 
○ Syntactic arguments fulfill semantic roles

● Words have implicit syntactic relationships 
with each other in given sentences. 
○ Dependency Parsing: each word has one head
○ Easily constructed through 3 actions of shift-reduce parsing.

Takeaway: There is an interplay between word meaning and sentence structure!
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Graph-based Approaches

(From SLP 3rd ed., Jurafsky and Martin 2018)

A Graph:  G = [(V1, A1), (V1, A2), …]      (vertices and arcs)
Restrictions: 
1) Single designated ROOT with no incoming arcs
2) Every vertex only has one head (parent, governer); i.e. only one incoming arc
3) unique path from ROOT to every vertex
Idea: Search through all possible trees and pick best. 

General approach: For 
each word, pick the most 
likely head. Then check if 
still a fully-connected tree, 
and adjust. 

Complex and slow but leads 
to state of the art. Now done 
with neural models. 
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Relation to Semantic Roles

(From SLP 3rd ed., Jurafsky and Martin 2018)

     

Roles are restricted to nouns, but signalled through 
the verb and other parts of speech. 
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Parts-of-Speech

Open Class (also known as “content words”): 

Nouns, Verbs, Adjectives, Adverbs

Function words:

Determiners, conjunctions, pronouns, prepositions
mostly specify syntactic structure; express broad semantics connecting content words 



Parts-of-Speech: The Penn Treebank Tagset



Parts-of-Speech:
Social Media Tagset
(Gimpel et al., 2010)



POS Tagging: Applications

● Resolving ambiguity (speech: “lead”)

● Shallow searching: find noun phrases

● Speed up parsing

● Use as feature (or in place of word)



POS Tagging: Applications

● Resolving ambiguity (speech: “lead”)

● Shallow searching: find noun phrases

● Speed up parsing

● Use as feature (or in place of word)

● Understand what modern deep learning methods are dealing with implicitly. 



Window-based POS Tagging

?

The  book  looks  brief  so  I  am  happy  . 

Approach like we did word sense disambiguation...
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window size 
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?ND V
P(pi=‘N’|wi=brief) = .30
P(pi=‘V’|wi=brief) = .40
P(pi=‘A’|wi=brief) = .30

The  book  looks  brief  so  I  am  happy  . 
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window size 
of 3

?ND V
P(pi=‘N’|wi=brief,wi-1=looks,wi+1=so) = ??
P(pi=‘V’|wi=brief,wi-1=looks,wi+1=so) = ??
P(pi=‘A’|wi=brief,wi-1=looks,wi+1=so) = ??
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window size 
of 3

?ND V
P(pi=‘N’|wi=brief,wi-1=looks,wi+1=so) = .005
P(pi=‘V’|wi=brief,wi-1=looks,wi+1=so) = .005
P(pi=‘A’|wi=brief,wi-1=looks,wi+1=so) = .99

The  book  looks  brief  so  I  am  happy  . 

Window-based POS Tagging

ideal result
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Sequential Model

window size 
of 3

?ND V

sequence 
order of 1

The  book  looks  brief  so  I  am  happy  . 

P(pi=‘N’|pi-1=V) = .4
P(pi=‘V’|pi-1=V) = .10
P(pi=‘A’|pi-1=V) = .4



Sequential Model

window size 
of 3

?ND V

sequence 
order of 1

The  book  looks  brief  so  I  am  happy  . 

P(pi=‘N’|pi-1=V,wi=brief) = .3
P(pi=‘V’|pi-1=V,wi=brief) = .05
P(pi=‘A’|pi-1=V,wi=brief) = .65



Sequence modeling

-- Tasks that in which a current label is dependent on previous 
labels within a sequence. 

More generally: tasks that can leverage the order of words. 

Most basic example: Language Modeling 
         -- Predicting the next word given previous.


